PsbD | D2 protein of PSII positive control/quantitation standard

Product no: AS09 146S

AS09 146S  |  Recombinant protein standard for quantitation and positive control

185
Add to cart
Customer reviews
Delivery:  3-6 business days
  • Product Info
  • Format: Lyophilized in glycerol
    Quantity: 250 µl
    Reconstitution: For reconstitution add 225 µl of sterile water, Please notice that this product contains 10% glycerol and might appear as liquid but is provided lyophilized
    Storage: Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please remember to spin the tubes briefly prior to opening them to avoid any losses that might occur from material adhering to the cap or sides of the tube.
    Tested applications: Western blot (WB)
    Recommended dilution:
    Standard curve: 3 loads are recommended (0.5, 2 and 4 μl).

    For most applications a sample load of 0.2 μg of chlorophyll will give a PsbD signal in this range.

    Positive control: a 2 μl load per well is optimal for most chemiluminescent detection systems. 

    This standard is stabilized and ready and does not require heating before loading on the gel.

    Please note that this product contains 10% glycerol and might appear as liquid but is provided lyophilized. Allow the product several minutes to solubilize after adding water. Mix thoroughly but gently Take extra care to mix thoroughly before each use, as the proteins tend to settle with the more dense layer after freezing.
    Expected | apparent MW:

    In most gel systems PsbD migrates around 28-30 kDa

  • Additional Information
  • Additional information:
    The PsbD protein standard can be used in combination with global anti-PsbD antibodies to quantitate PsbD from a wide range of species. Global antibodies are raised against highly conserved amino acid sequences in the PsbD protein.

    Quantitative western blot:  detailed method description, video tutorial
    Additional information (application):

    Concentration: after adding 225 µl of milliQ water final concentration of the standard is 0.25 pmoles/ul

    Protein standard buffer composition: Glycerol 10%, Tris Base 141 mM, Tris HCl 106 mM, LDS 2%, EDTA 0.51 mM, SERVA® Blue G250 0.22 mM, Phenol Red 0.175 mM, pH 8.5, 0.1 mg/ml PefaBloc protease inhibitor (Roche), 50 mM DTT.

    This standard is ready-to-load and does not require any additions or heating. It needs to be fully thawed and thoroughly mixed prior to using. Avoid vigorous vortexing, as buffers contain detergent. Following mixing, briefly pulse in a microcentrifuge to collect material from cap.

    This standard is stabilized and ready and does not require heating before loading on the gel.

    Please note that this product contains 10% glycerol and might appear as liquid but is provided lyophilized. Allow the product several minutes to solubilize after adding water. Mix thoroughly but gently Take extra care to mix thoroughly before each use, as the proteins tend to settle with the more dense layer after freezing.

  • Background
  • Background:

    D2 protein (PsbD) forms the reaction core of PSII (Photosystem II) as a heterodimer with the D1 protein (PsbA). PsbD is homologous to the D1 protein, with slightly higher molecular mass of about 39.5 kDa. Accumulation of D2 protein is an important step in the assemply of the PSII reaction centre complex.

    This product is a recombinant protein standard, source Synechocystis strain PCC 6803.

  • Product Citations
  • Selected references: Partensky et al. (2018). Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex. Photosynth Res. 2018 Jun 25. doi: 10.1007/s11120-018-0539-3.
    Li et al. (2016). A Hard Day's Night: Diatoms Continue Recycling Photosystem II in the Dark. Front. Mar. Sci., 08 November 2016
    Li et al. (2014). The nitrogen costs of photosynthesis in a diatom under current and future pCO2. New Phytol. 2014 Sep 25. doi: 10.1111/nph.13037.
  • Protocols
  • Agrisera Western Blot protocol and video tutorials

    Protocols to work with plant and algal protein extracts


    Oxygenic photosynthesis poster by prof. Govindjee and Dr. Shevela

    Z-scheme of photosynthetic electron transport by prof. Govindjee and Dr. Björn and Dr. Shevela



    Rubisco quantitation in plant and algal samples using Agrisera anti-petC global antibody and PetC protein standard

    Methodology: Plant samples are generally ground with liquid nitrogen in a mortar and pestle. The resulting powder is transferred to a plastic tube. Algal samples can be either concentrated by centrifugation or, preferably, by filtration onto glass fiber filters. Solubilization is performed in Agrisera protein extraction buffer (PEB, AS08 300) containing 0.1mg/mL PefaBloc SC (AEBSF) protease inhibitor (Roche). Disruption is most optimally obtained through flash freezing of the sample in liquid nitrogen alternated with thawing by sonication with a microtip. This process can be repeated depending on the toughness of the sample. The sample is adjusted to 50 mM dithiothreitol and heated to 70°C for 5 minutes. Samples are cooled and centrifuged briefly prior to electrophoresis.

    Optimal quantitation is achieved using moderate sample loads per gel lane, generally 0.5 to 2.5 ug total protein, depending on the abundance of the target protein.

    Electrophoresis and Immunoblotting: Once solubilized, the proteins can be separated electrophoretically in a number of systems. We obtain optimal results with the Invitrogen NuPAGE gel system using Bis-Tris 4-12% gradient gels. Proteins are separated in MES SDS running buffer according to the manufacturer’s recommendations at 200 V for 35 minutes. The gels are transferred to PVDF in the same apparatus, the SureLock XCell blot module, for 60 minutes at 30 V for a single gel or 80 minutes for a pair. Following transfer the blots are blocked with non-fat dry milk up to 10 % in TBS-T, for 1 h/RT with gentle agitation. The blot is incubated with primary antibody, usually at 1:25 000 to 1:50 000, for 1 h/RT (if extreme femtogram detection reagents are used) or in lower primary antibody dilution for less sensitivie reagents (mid picogram and lower).

    For quantitation a relatively high primary antibody: target protein ratio gives more reliable results than immunoblots at low ratios of primary antibody:target protein.

    The blot is washed extensively in TBS-T (twice briefly, once for 15 minutes and three times for five minutes). The blot is incubated with secondary antibody, for example goat anti-rabbit IgG horse radish peroxidase conjugated, AS09 602 (Agrisera), for 1h/RT. The blot is washed as above and developed with ECL detection reagents.

    Quantitation: When quantitated standards are included on the blot, the samples can be quantitated using the available software. Excellent quantitation can be obtained with images captured on the Bio-Rad Fluor-S-Max or equivalent instrument using Bio-Rad QuantityOne software. The contour tool is used to select the area for quantitation and the values are background subtracted to give an adjusted volume in counts for each standard and sample. Using above protocol linear standard curves are generated over 1-1.5 orders of magnitude range in target load. It is important to note that immunodetections usually show a strongly sigmoidal signal to load response curve, with a region of trace detection of low loads, a pseudolinear range and a region of saturated response with high loads. For immunoquantitation it is critical that the target proteins in the samples and the standard curve fall within the pseudolinear range. Our total detection range using this protocol spans over 2 orders of magnitude, but the quantifiable range is narrower.


    References:

    MacKenzie et al  (2005). Large reallocations of carbon, nitrogen and photosynthetic reductant among phycobilisomes, photosystems and Rubisco during light acclimation in Synechococcus elongatus are constrained in cells under low environmental inorganic carbon. Arch of Microbiol. 183: 190 - 202.
    Bouchard et al. (2006) UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities. Photochem and Photobiol 82: 936-951. 
    Morash
    et al. (2007) Macromolecular dynamics of the photosynthetic system over a seasonal developmental progression in Spartina alterniflora. Can J. of Bot. 85: 476-483(8)

    Recommended secondary antibodies: goat anti-rabbit HRP conjugated, goat anti-rabbit ALP conjugated


    Recommended chemiluminescent detection reagent: AgriseraECLBright

  • Reviews:
  • Reviews
    Below, you can grade the product on a scale from 0 to 5.
    Please also provide information about species, application, dilution and obtained result for the reviewed antibody.
    Your name will be displayed as the sender.
    Number of reviews: (0)

    This product doesn't have any reviews.

Accessories

AS06 146  |  Clonality: Polyclonal  |  Host: Rabbit  |  Reactivity: [global antibody] for A. thaliana, Anabaena 7120, D. brightwellii, H. vulgare, C.reinhardtii, C. zofingiensis, L. corniculatus, N. tabacum, O. sativa, P. sativum, P. vulgaris, P. tricornutum, T. pratense, S. alba, Synechococcus sp. PCC 7942, Synechocystis sp. PCC6803, T. guillardii, T. pseudonana, Triticale, U. prolifera, Z. mays

Benefits of using this antibody

329 €
Add to cart
Info

AS09 602 |  Clonality: Polyclonal | Host: Goat | Reactivity: Rabbit IgG (H&L)

219 €
Add to cart
Info

AS09 607 |  Clonality: Polyclonal Host: Goat Reactivity: Rabbit IgG (H&L)

225 €
Add to cart
Info
Close